The square kernel is a standard unit for contemporary Convolutional Neural Networks (CNNs), as it fits well on the tensor computation for the convolution operation. However, the receptive field in the human visual system is actually isotropic like a circle. Motivated by this observation, we propose using circle kernels with isotropic receptive fields for the convolution, and our training takes approximately equivalent amount of calculation when compared with the corresponding CNN with square kernels. Our preliminary experiments demonstrate the rationality of circle kernels. We then propose a kernel boosting strategy that integrates the circle kernels with square kernels for the training and inference, and we further let the kernel size/radius be learnable during the training. Note that we reparameterize the circle kernels or integrated kernels before the inference, thus taking no extra computation as well as the number of parameter overhead for the testing. Extensive experiments on several standard datasets, ImageNet, CIFAR-10 and CIFAR-100, using the circle kernels or integrated kernels on typical existing CNNs, show that our approach exhibits highly competitive performance. Specifically, on ImageNet with standard data augmentation, our approach dramatically boosts the performance of MobileNetV3-Small by 5.20% top-1 accuracy and 3.39% top-5 accuracy, and boosts the performance of MobileNetV3-Large by 2.16% top-1 accuracy and 1.18% top-5 accuracy.
翻译:方心内核是当代革命神经网络的标准单元, 因为它在卷动操作的电压计算中非常适合 。 然而, 人类视觉系统中的可接收字段实际上是一个圆形的偏移场。 受此观察的驱动, 我们提议使用圆心内核与异向可接收场进行卷动, 我们的培训在与相应的CNN和平心内核相比, 需要大约等量的计算。 我们的初步实验显示圆心内核的合理性能。 我们然后提出一个将圆心内核与用于培训和推断的正方心内核整合起来的战略。 我们进一步让在训练期间可以学习圆心内核大小/射线。 注意, 我们用圆心内内核与偏振荡前的圆内核或集内核综合内核进行重新校准, 因此不做额外的计算, 测试时的参数间接数。 在若干标准数据集、 图像内核网络、 CIFAR- 10 和 CIFAR- 100 上进行广泛的实验, 使用圆心内核的准确性能- 5- IMNS 的高级性能、 标准内核显示我们SBV3 5 的SBS 的高级、 的高级内核、 的高级内核、 的高级性能图显示的高级性能图的高级性能3, 和5- 5- 5- 的升级的高级的高级性能级的高级性能的高级性能展示的高级性能图。