We present a sparse Gauss-Newton solver for accelerated sensitivity analysis with applications to a wide range of equilibrium-constrained optimization problems. Dense Gauss-Newton solvers have shown promising convergence rates for inverse problems, but the cost of assembling and factorizing the associated matrices has so far been a major stumbling block. In this work, we show how the dense Gauss-Newton Hessian can be transformed into an equivalent sparse matrix that can be assembled and factorized much more efficiently. This leads to drastically reduced computation times for many inverse problems, which we demonstrate on a diverse set of examples. We furthermore show links between sensitivity analysis and nonlinear programming approaches based on Lagrange multipliers and prove equivalence under specific assumptions that apply for our problem setting.


翻译:我们提出了一个稀疏的高斯-牛顿解答器,用于加速敏感度分析,并应用于一系列受均衡制约的优化问题。 登塞高斯-牛顿解答器显示,反问题的趋同率很有希望,但相关矩阵的组装和计算成本迄今为止是一个主要障碍。 在这项工作中,我们展示了如何将密集的高斯-牛顿·赫塞西亚转换成一个可以更有效地收集和分解的相等的稀少矩阵。这导致许多反向问题的计算时间急剧缩短,我们用一系列不同的范例展示了这些问题。 我们还展示了敏感度分析与基于拉格朗格乘数的非线性编程方法之间的联系,并在适用于我们问题设置的具体假设下证明了等值。

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
26+阅读 · 2020年2月15日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
A New Basis for Sparse Principal Component Analysis
Arxiv
0+阅读 · 2021年9月7日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员