Copy mechanism allows sequence-to-sequence models to choose words from the input and put them directly into the output, which is finding increasing use in abstractive summarization. However, since there is no explicit delimiter in Chinese sentences, most existing models for Chinese abstractive summarization can only perform character copy, resulting in inefficient. To solve this problem, we propose a lexicon-constrained copying network that models multi-granularity in both encoder and decoder. On the source side, words and characters are aggregated into the same input memory using a Transformerbased encoder. On the target side, the decoder can copy either a character or a multi-character word at each time step, and the decoding process is guided by a word-enhanced search algorithm that facilitates the parallel computation and encourages the model to copy more words. Moreover, we adopt a word selector to integrate keyword information. Experiments results on a Chinese social media dataset show that our model can work standalone or with the word selector. Both forms can outperform previous character-based models and achieve competitive performances.
翻译:复制机制允许序列到序列模式从输入中选择单词, 并将其直接输入输出中, 这在抽象总和中发现正在越来越多地被使用。 但是, 由于中国句子中没有明确的分隔符, 大部分现有的中国抽象总和模型只能执行字符复制, 导致效率低下 。 为了解决这个问题, 我们提议了一个不受字典限制的复制网络, 使模型在编码器和解码器中都具有多角度性。 在源端, 单词和字符可以使用基于变换器的编码器合并成相同的输入内存 。 在目标侧, 解码器可以复制字符或多字符单词, 并且解码进程只能用一个单词强化的搜索算法来引导, 从而方便平行计算, 并鼓励模型复制更多的单词。 此外, 我们采用一个单词选择器来整合关键词信息 。 在中国社交媒体数据集上实验结果显示, 我们的模型可以独立或用单词选择器工作 。 在目标侧, 两种表格可以超越先前的字符模型, 并实现竞争性的功能 。