Recent studies have demonstrated improved skill in numerical weather prediction via the use of spatially correlated observation error covariance information in data assimilation systems. In this case, the observation weighting matrices (inverse error covariance matrices) used in the assimilation may be full matrices rather than diagonal. Thus, the computation of matrix-vector products in the variational minimization problem may be very time-consuming, particularly if the parallel computation of the matrix-vector product requires a high degree of communication between processing elements. Hence, we introduce a well-known numerical approximation method, called the fast multipole method (FMM), to speed up the matrix-vector multiplications in data assimilation. We explore a particular type of FMM that uses a singular value decomposition (SVD-FMM) and adjust it to suit our new application in data assimilation. By approximating a large part of the computation of the matrix-vector product, the SVD-FMM technique greatly reduces the computational complexity compared with the standard approach. We develop a novel possible parallelization scheme of the SVD-FMM for our application, which can reduce the communication costs. We investigate the accuracy of the SVD-FMM technique in several numerical experiments: we first assess the accuracy using covariance matrices that are created using different correlation functions and lengthscales; then investigate the impact of reconditioning the covariance matrices on the accuracy; and finally examine the feasibility of the technique in the presence of missing observations. We also provide theoretical explanations for some numerical results. Our results show that the SVD-FMM technique has potential as an efficient technique for assimilation of a large volume of observational data within a short time interval.


翻译:最近的研究显示,通过在数据同化系统中使用空间相关观测误差共差信息,数字天气预测技能有所提高;在这种情况下,同化中使用的观测权重矩阵(逆差共差矩阵)可能是全矩阵,而不是对等矩阵。因此,在变式最小化问题中计算矩阵矢量产品可能非常耗时,特别是如果同时计算矩阵矢量产品需要处理要素之间的高度沟通。因此,我们采用了众所周知的数字近似方法,称为快速多极方法,以加快数据同化中的矩阵-矢量倍增速度。我们探索一种使用单值分解(SVD-FMMM)的特殊类型,并调整它以适应我们在数据同化中的新应用。通过对矩阵-矢量产品的大量平行计算,SVD-FMM技术大大降低了计算的复杂性。我们开发了一种新型的SVD-F多极点平行化方法,以加速数据同化数据同化的乘积乘数矩阵观测速度。我们用一些数值的精确度计算结果来测量我们应用的SVD-VD的数值的精确度。

0
下载
关闭预览

相关内容

Python图像处理,366页pdf,Image Operators Image Processing in Python
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
已删除
将门创投
3+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
9+阅读 · 2021年6月21日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
图嵌入(Graph embedding)综述
人工智能前沿讲习班
449+阅读 · 2019年4月30日
已删除
将门创投
3+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员