Spectral projectors of Hermitian matrices play a key role in many applications, and especially in electronic structure computations. Linear scaling methods for gapped systems are based on the fact that these special matrix functions are localized, which means that the entries decay exponentially away from the main diagonal or with respect to more general sparsity patterns. The relation with the sign function together with an integral representation is used to obtain new decay bounds, which turn out to be optimal in an asymptotic sense. The influence of isolated eigenvalues in the spectrum on the decay properties is also investigated and a superexponential behaviour is predicted.


翻译:Hermitian 矩阵的光谱投影仪在许多应用中,特别是在电子结构计算中发挥着关键作用。 偏差系统的线性缩放方法基于以下事实:这些特殊的矩阵功能是本地化的,这意味着条目从主对角或更一般的宽度模式中迅速衰减。与标志函数和整体表示法的关系被用来获得新的衰减线,从非现成的意义上看,这些线性线性调整是最佳的。还调查了孤立的光谱中叶素值对衰变特性的影响,并预测了超显性行为。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员