This work delves into the exponential time differencing (ETD) schemes for the matrix-valued Allen-Cahn equation. In fact, the maximum bound principle (MBP) for the first- and second-order ETD schemes is presented in a prior publication [SIAM Review, 63(2), 2021], assuming a symmetric initial matrix field. Noteworthy is our novel contribution, demonstrating that the first- and second-order ETD schemes for the matrix-valued Allen-Cahn equation -- both being linear schemes -- unconditionally preserve the MBP, even in instances of nonsymmetric initial conditions. Additionally, we prove that these two ETD schemes preserve the energy dissipation law unconditionally for the matrix-valued Allen-Cahn equation. Some numerical examples are presented to verify our theoretical results and to simulate the evolution of corresponding matrix fields.
翻译:暂无翻译