The canonical polyadic decomposition (CPD) of a low rank tensor plays a major role in data analysis and signal processing by allowing for unique recovery of underlying factors. However, it is well known that the low rank CPD approximation problem is ill-posed. That is, a tensor may fail to have a best rank $R$ CPD approximation when $R>1$. This article gives deterministic bounds for the existence of best low rank tensor approximations over $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. More precisely, given a tensor $\mathcal{T} \in \mathbb{K}^{I \times I \times I}$ of rank $R \leq I$, we compute the radius of a Frobenius norm ball centered at $\mathcal{T}$ in which best $\mathbb{K}$-rank $R$ approximations are guaranteed to exist. In addition we show that every $\mathbb{K}$-rank $R$ tensor inside of this ball has a unique canonical polyadic decomposition. This neighborhood may be interpreted as a neighborhood of "mathematical truth" in with CPD approximation and computation is well-posed. In pursuit of these bounds, we describe low rank tensor decomposition as a ``joint generalized eigenvalue" problem. Using this framework, we show that, under mild assumptions, a low rank tensor which has rank strictly greater than border rank is defective in the sense of algebraic and geometric multiplicities for joint generalized eigenvalues. Bounds for existence of best low rank approximations are then obtained by establishing perturbation theoretic results for the joint generalized eigenvalue problem. In this way we establish a connection between existence of best low rank approximations and the tensor spectral norm. In addition we solve a "tensor Procrustes problem" which examines orthogonal compressions for pairs of tensors. The main results of the article are illustrated by a variety of numerical experiments.


翻译:低级电流的直径分解( CPD) 在数据分析和信号处理中扮演主要角色, 允许特殊恢复基本因素。 然而, 众所周知, 低级的 CPD 近似问题存在错误。 也就是说, 当 $R> 1 美元时, 高级可能没有最高等级 $R$ CPD 近似( CPD) 。 此文章给出了最低级的 直径近近于 $\ mathb{ K} $ 或 $\ mathb{ K} 。 更准确地说, 低级的 直径直径直径直径直径直径直径直径直线( Qmathcal{ T}) 。 最低的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直直直直径直径直径直径直径直径直直直直直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直, 。 直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
4+阅读 · 2018年6月1日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Signal Decomposition Using Masked Proximal Operators
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
81+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
已删除
将门创投
4+阅读 · 2018年6月1日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员