When solving partial differential equations with random fields as coefficients the efficient sampling of random field realisations can be challenging. In this paper we focus on the fast sampling of Gaussian fields using quasi-random points in a finite element and multilevel quasi Monte Carlo (MLQMC) setting. Our method uses the SPDE approach of Lindgren et al.~combined with a new fast algorithm for white noise sampling which is taylored to (ML)QMC. We express white noise as a wavelet series expansion that we divide in two parts. The first part is sampled using quasi-random points and contains a finite number of terms in order of decaying importance to ensure good QMC convergence. The second part is a correction term which is sampled using standard pseudo-random numbers. We show how the sampling of both terms can be performed in linear time and memory complexity in the number of mesh cells via a supermesh construction, yielding an overall linear cost. Furthermore, our technique can be used to enforce the MLQMC coupling even in the case of non-nested mesh hierarchies. We demonstrate the efficacy of our method with numerical experiments.
翻译:当用随机字段作为系数解决部分差异方程式时,随机字段实现的高效抽样可能具有挑战性。在本文中,我们侧重于使用有限元素和多级准蒙特卡洛(MLQMC)设置的准随机点快速抽样高斯田地。我们的方法使用林德格伦等人的SPDE方法;结合一种白色噪音取样的新的快速算法,该算法被尊崇到(ML)QMC。我们把白色噪音作为波段序列来表达,我们将其分成两个部分。第一部分是使用准随机点抽样,并包含一定数量的术语,以确保QMC的融合。第二部分是使用标准的假随机数字进行抽样的改正术语。我们展示了两个术语的取样方法如何通过超模组的构造在线性时间和记忆复杂性中进行,从而产生总体线性成本。此外,我们的技术可以用来执行MLQMC的组合,即使是在非涅斯特河段结构中进行。我们用数字实验来证明我们的方法的有效性。