In a recent work, O'Donnell, Servedio and Tan (STOC 2019) gave explicit pseudorandom generators (PRGs) for arbitrary $m$-facet polytopes in $n$ variables with seed length poly-logarithmic in $m,n$, concluding a sequence of works in the last decade, that was started by Diakonikolas, Gopalan, Jaiswal, Servedio, Viola (SICOMP 2010) and Meka, Zuckerman (SICOMP 2013) for fooling linear and polynomial threshold functions, respectively. In this work, we consider a natural extension of PRGs for intersections of positive spectrahedrons. A positive spectrahedron is a Boolean function $f(x)=[x_1A^1+\cdots +x_nA^n \preceq B]$ where the $A^i$s are $k\times k$ positive semidefinite matrices. We construct explicit PRGs that $\delta$-fool "regular" width-$M$ positive spectrahedrons (i.e., when none of the $A^i$s are dominant) over the Boolean space with seed length $\textsf{poly}(\log k,\log n, M, 1/\delta)$. Our main technical contributions are the following: We first prove an invariance principle for positive spectrahedra via the well-known Lindeberg method. As far as we are aware such a generalization of the Lindeberg method was unknown. Second, we prove an upper bound on noise sensitivity and a Littlewood-Offord theorem for positive spectrahedra. Using these results, we give applications for constructing PRGs for positive spectrahedra, learning theory, discrepancy sets for positive spectrahedra (over the Boolean cube) and PRGs for intersections of structured polynomial threshold functions.
翻译:O'Donnell、Servidio和Tan(STOC 2019)最近的一项工作是,O'Donnell、Servidio和Tan(STOC 2019)分别为任意以美元计价的假币生成器(PRGs),用于以美元计价的任意性美元面部多孔变量($,n美元),在过去十年中完成一系列工作,由Diakonikolas、Gopalan、Jaiswal、Seeddio、Viola(SICOMP 2010)和Meka、Zuckerman(SICOMP 2013)分别用于愚弄线性和多盘性临界值。在这项工作中,我们考虑的是PRGs的自然延伸值(美元),一个积极的直径比值(美元),一个正比值(美元),一个正值(美元比值),一个比值(美元比值),一个比值(美元比值(美元比值)的直值(美元比值),一个比值(美元比值),一个比值(美元比值)比值(我们的直值)的直值(美元比值),一个比值,一个比值,一个比值的直)比值,一个比值(我们的直)的直)的直,一个比值(比值,一个比值,一个比值的直)的直)的直)的直的直的M的摩的直的摩的摩的摩的直的直的摩的直的直的基值。