Hidden community is a useful concept proposed recently for social network analysis. To handle the rapid growth of network scale, in this work, we explore the detection of hidden communities from the local perspective, and propose a new method that detects and boosts each layer iteratively on a subgraph sampled from the original network. We first expand the seed set from a single seed node based on our modified local spectral method and detect an initial dominant local community. Then we temporarily remove the members of this community as well as their connections to other nodes, and detect all the neighborhood communities in the remaining subgraph, including some "broken communities" that only contain a fraction of members in the original network. The local community and neighborhood communities form a dominant layer, and by reducing the edge weights inside these communities, we weaken this layer's structure to reveal the hidden layers. Eventually, we repeat the whole process and all communities containing the seed node can be detected and boosted iteratively. We theoretically show that our method can avoid some situations that a broken community and the local community are regarded as one community in the subgraph, leading to the inaccuracy on detection which can be caused by global hidden community detection methods. Extensive experiments show that our method could significantly outperform the state-of-the-art baselines designed for either global hidden community detection or multiple local community detection.
翻译:隐藏社区是社会网络分析最近提出的一个有用概念。 为了处理网络规模的快速增长, 在这项工作中, 我们从本地角度探索如何探测隐藏社区, 并提议一种新的方法, 通过原始网络的子谱抽样, 来探测和提升每个层。 我们首先根据我们修改的地方光谱方法, 从单一种子节点上扩大种子组, 并检测最初占主导地位的地方社区。 然后我们暂时删除这个社区的成员以及他们与其他节点的联系, 并检测其余子集中的所有社区, 包括某些只包含原始网络成员一部分的“ 碎块社区 ” 。 地方社区和邻里社区形成一个主导层, 通过减少这些社区内部的边缘重量, 我们削弱这个层的结构以揭示隐藏层。 最后, 我们重复整个过程, 以及所有含有种子节点的社区都可以被检测并振动。 我们理论上显示, 我们的方法可以避免一些被破坏的社区以及当地社区在子集中被视为一个社区的情况, 导致检测不精确的检测过程, 或者通过全球秘密的检测方法, 能够大大地显示隐藏社区 的检测方式 。