Robotic tasks which involve uncertainty--due to variation in goal, environment configuration, or confidence in task model--may require human input to instruct or adapt the robot. In tasks with physical contact, several existing methods for adapting robot trajectory or impedance according to individual uncertainties have been proposed, e.g., realizing intention detection or uncertainty-aware learning from demonstration. However, isolated methods cannot address the wide range of uncertainties jointly present in many tasks. To improve generality, this paper proposes a model predictive control (MPC) framework which plans both trajectory and impedance online, can consider discrete and continuous uncertainties, includes safety constraints, and can be efficiently applied to a new task. This framework can consider uncertainty from: contact constraint variation, uncertainty in human goals, or task disturbances. An uncertainty-aware task model is learned from a few ($\leq3$) demonstrations using Gaussian Processes. This task model is used in a nonlinear MPC problem to optimize robot trajectory and impedance according to belief in discrete human goals, human kinematics, safety constraints, contact stability, and frequency-domain disturbance rejection. This MPC formulation is introduced, analyzed with respect to convexity, and validated in co-manipulation with multiple goals, a collaborative polishing task, and a collaborative assembly task.
翻译:由于目标、环境配置或对任务模型的信心的差异,涉及不确定性的机器人任务,由于目标、环境配置或对任务模型的信心的差异,可能需要人的投入来指导或改造机器人。在与物理接触的任务中,提出了几项根据个别不确定因素调整机器人轨迹或障碍的现有方法,例如,实现目的探测或从演示中了解不确定性;然而,孤立的方法无法解决许多任务中共同存在的各种不确定性。为了改进普遍性,本文件提议了一个模型预测控制框架,既规划轨迹,又规划在线阻力,可以考虑离散和持续的不确定因素,包括安全限制,并可以有效地应用于新的任务。这个框架可以考虑不确定性,包括:接触制约变化、人类目标的不确定性或任务干扰。一个了解不确定性的任务模型是利用Gausian进程从几个演示中学习的($\leq3$) 。这个任务模型用于一个非线性MPC问题,以优化机器人轨迹,并阻碍人们相信离散的人类目标、人类运动、安全限制、接触稳定性和频率扰动障碍的抵制。这个框架可以考虑从以下的不确定性:接触限制、人类目标的不确定性或任务扰动性干扰干扰干扰的干扰。这个框架的制定与多种协作任务的验证、协同化任务是引入的,一个共同任务,一个对一个共同任务进行分析。