Morphological regeneration is an important feature that highlights the environmental adaptive capacity of biological systems. Lack of this regenerative capacity significantly limits the resilience of machines and the environments they can operate in. To aid in addressing this gap, we develop an approach for simulated soft robots to regrow parts of their morphology when being damaged. Although numerical simulations using soft robots have played an important role in their design, evolving soft robots with regenerative capabilities have so far received comparable little attention. Here we propose a model for soft robots that regenerate through a neural cellular automata. Importantly, this approach only relies on local cell information to regrow damaged components, opening interesting possibilities for physical regenerable soft robots in the future. Our approach allows simulated soft robots that are damaged to partially regenerate their original morphology through local cell interactions alone and regain some of their ability to locomote. These results take a step towards equipping artificial systems with regenerative capacities and could potentially allow for more robust operations in a variety of situations and environments. The code for the experiments in this paper is available at: \url{github.com/KazuyaHoribe/RegeneratingSoftRobots}.
翻译:生理再生是强调生物系统环境适应能力的一个重要特征。 缺乏这种再生能力极大地限制了机器及其操作环境的抗御能力。 为了帮助弥补这一差距, 我们为模拟软机器人开发了一种方法, 以在受损时再生其形态部分。 虽然使用软机器人的数值模拟在其设计中发挥了重要作用, 但具有再生能力的软机器人迄今得到的相对较少的关注。 我们在这里提议了一个通过神经细胞自动成形再生的软机器人模型。 重要的是, 这种方法只能依靠本地细胞信息再生受损的部件, 为将来的物理再生软机器人开辟有趣的可能性。 我们的方法允许被损坏的模拟软机器人单独通过本地细胞互动部分地再生原形态, 并恢复其某些迁移能力。 这些结果在为人造系统配备再生能力方面迈出了一步, 并有可能允许在各种情况下和环境进行更稳健的操作。 本文中的实验代码在: Rzua/ Razubetri 。