Morphological regeneration is an important feature that highlights the environmental adaptive capacity of biological systems. Lack of this regenerative capacity significantly limits the resilience of machines and the environments they can operate in. To aid in addressing this gap, we develop an approach for simulated soft robots to regrow parts of their morphology when being damaged. Although numerical simulations using soft robots have played an important role in their design, evolving soft robots with regenerative capabilities have so far received comparable little attention. Here we propose a model for soft robots that regenerate through a neural cellular automata. Importantly, this approach only relies on local cell information to regrow damaged components, opening interesting possibilities for physical regenerable soft robots in the future. Our approach allows simulated soft robots that are damaged to partially regenerate their original morphology through local cell interactions alone and regain some of their ability to locomote. These results take a step towards equipping artificial systems with regenerative capacities and could potentially allow for more robust operations in a variety of situations and environments. The code for the experiments in this paper is available at: \url{github.com/KazuyaHoribe/RegeneratingSoftRobots}.


翻译:生理再生是强调生物系统环境适应能力的一个重要特征。 缺乏这种再生能力极大地限制了机器及其操作环境的抗御能力。 为了帮助弥补这一差距, 我们为模拟软机器人开发了一种方法, 以在受损时再生其形态部分。 虽然使用软机器人的数值模拟在其设计中发挥了重要作用, 但具有再生能力的软机器人迄今得到的相对较少的关注。 我们在这里提议了一个通过神经细胞自动成形再生的软机器人模型。 重要的是, 这种方法只能依靠本地细胞信息再生受损的部件, 为将来的物理再生软机器人开辟有趣的可能性。 我们的方法允许被损坏的模拟软机器人单独通过本地细胞互动部分地再生原形态, 并恢复其某些迁移能力。 这些结果在为人造系统配备再生能力方面迈出了一步, 并有可能允许在各种情况下和环境进行更稳健的操作。 本文中的实验代码在: Rzua/ Razubetri 。

0
下载
关闭预览

相关内容

[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月29日
VIP会员
相关VIP内容
[WWW2021]图结构估计神经网络
专知会员服务
42+阅读 · 2021年3月29日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Gartner:2019 年 MSP 魔力象限
云头条
15+阅读 · 2019年3月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员