In this paper, we conduct an in-depth analysis of several key factors influencing the performance of Arabic Dialect Identification NADI'2023, with a specific focus on the first subtask involving country-level dialect identification. Our investigation encompasses the effects of surface preprocessing, morphological preprocessing, FastText vector model, and the weighted concatenation of TF-IDF features. For classification purposes, we employ the Linear Support Vector Classification (LSVC) model. During the evaluation phase, our system demonstrates noteworthy results, achieving an F1 score of 62.51%. This achievement closely aligns with the average F1 scores attained by other systems submitted for the first subtask, which stands at 72.91%.
翻译:暂无翻译