The availability of fast to evaluate and reliable predictive models is highly relevant in multi-query scenarios where evaluating some quantities in real, or near-real-time becomes crucial. As a result, reduced-order modelling techniques have gained traction in many areas in recent years. We introduce Arby, an entirely data-driven Python package for building reduced order or surrogate models. In contrast to standard approaches, which involve solving partial differential equations, Arby is entirely data-driven. The package encompasses several tools for building and interacting with surrogate models in a user-friendly manner. Furthermore, fast model evaluations are possible at a minimum computational cost using the surrogate model. The package implements the Reduced Basis approach and the Empirical Interpolation Method along a classic regression stage for surrogate modelling. We illustrate the simplicity in using Arby to build surrogates through a simple toy model: a damped pendulum. Then, for a real case scenario, we use Arby to describe CMB temperature anisotropies power spectra. On this multi-dimensional setting, we find that out from an initial set of $80,000$ power spectra solutions with $3,000$ multipole indices each, could be well described at a given tolerance error, using just a subset of $84$ solutions.


翻译:快速评估和可靠预测模型的可用性在多解假设中非常相关,在多解假设中,以实际或近实时评估某些数量变得至关重要。因此,在最近几年中,减少序列建模技术在许多领域获得了牵引力。我们采用了完全由数据驱动的 Python 软件包Arby, 用于构建降低的秩序或替代模型。与标准方法相比,它涉及部分差异方程的解决, Arby 完全是数据驱动的。该软件包包含若干工具,用于以方便用户的方式建立代用模型并与代用模型互动。此外,快速模型评估有可能以最低计算成本使用代用模型。该软件包在典型的代用模型回归阶段采用减底法和模拟方法。我们用Arby 展示了通过简单玩具模型(一个被压断裂的平方格)建立代理模型的简单性。然后,我们用Arby 用于描述CMB温度和代用替代模型进行互动的电源光谱谱光谱光谱。在这个多维度设置上,我们发现,从最初的80,000美元模型模型中可以找到每个被描述为8000美元的模型的模型的模型。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员