The availability of fast to evaluate and reliable predictive models is highly relevant in multi-query scenarios where evaluating some quantities in real, or near-real-time becomes crucial. As a result, reduced-order modelling techniques have gained traction in many areas in recent years. We introduce Arby, an entirely data-driven Python package for building reduced order or surrogate models. In contrast to standard approaches, which involve solving partial differential equations, Arby is entirely data-driven. The package encompasses several tools for building and interacting with surrogate models in a user-friendly manner. Furthermore, fast model evaluations are possible at a minimum computational cost using the surrogate model. The package implements the Reduced Basis approach and the Empirical Interpolation Method along a classic regression stage for surrogate modelling. We illustrate the simplicity in using Arby to build surrogates through a simple toy model: a damped pendulum. Then, for a real case scenario, we use Arby to describe CMB temperature anisotropies power spectra. On this multi-dimensional setting, we find that out from an initial set of $80,000$ power spectra solutions with $3,000$ multipole indices each, could be well described at a given tolerance error, using just a subset of $84$ solutions.
翻译:快速评估和可靠预测模型的可用性在多解假设中非常相关,在多解假设中,以实际或近实时评估某些数量变得至关重要。因此,在最近几年中,减少序列建模技术在许多领域获得了牵引力。我们采用了完全由数据驱动的 Python 软件包Arby, 用于构建降低的秩序或替代模型。与标准方法相比,它涉及部分差异方程的解决, Arby 完全是数据驱动的。该软件包包含若干工具,用于以方便用户的方式建立代用模型并与代用模型互动。此外,快速模型评估有可能以最低计算成本使用代用模型。该软件包在典型的代用模型回归阶段采用减底法和模拟方法。我们用Arby 展示了通过简单玩具模型(一个被压断裂的平方格)建立代理模型的简单性。然后,我们用Arby 用于描述CMB温度和代用替代模型进行互动的电源光谱谱光谱光谱。在这个多维度设置上,我们发现,从最初的80,000美元模型模型中可以找到每个被描述为8000美元的模型的模型的模型。