While deep learning has achieved phenomenal successes in many AI applications, its enormous model size and intensive computation requirements pose a formidable challenge to the deployment in resource-limited nodes. There has recently been an increasing interest in computationally-efficient learning methods, e.g., quantization, pruning and channel gating. However, most existing techniques cannot adapt to different tasks quickly. In this work, we advocate a holistic approach to jointly train the backbone network and the channel gating which enables dynamical selection of a subset of filters for more efficient local computation given the data input. Particularly, we develop a federated meta-learning approach to jointly learn good meta-initializations for both backbone networks and gating modules, by making use of the model similarity across learning tasks on different nodes. In this way, the learnt meta-gating module effectively captures the important filters of a good meta-backbone network, based on which a task-specific conditional channel gated network can be quickly adapted, i.e., through one-step gradient descent, from the meta-initializations in a two-stage procedure using new samples of that task. The convergence of the proposed federated meta-learning algorithm is established under mild conditions. Experimental results corroborate the effectiveness of our method in comparison to related work.


翻译:虽然许多AI应用程序的深度学习取得了惊人的成功,但其庞大的模型规模和密集的计算要求对资源有限节点的部署构成了巨大的挑战。最近人们越来越关注计算效率高的学习方法,例如量化、裁剪和通道格化。然而,大多数现有技术无法迅速适应不同的任务。在这项工作中,我们主张采取综合办法,联合培训主干网络和频道格导,以便能够根据数据输入情况,动态地选择一组过滤器,以便更有效地在当地进行本地计算。特别是,我们开发一种联合式元学习方法,通过利用不同节点的学习任务的相似性,共同学习主干网和模模模块的良好元首创式。这样,所学的元化模块能够有效捕捉到良好的Met-bone网络的重要过滤器。 在此基础上,可以迅速调整一个特定任务的有条件的频道门端网,即通过一阶梯级梯度梯度梯度梯度梯度梯度梯度梯度梯度下降。我们开发一种双级程序,共同学习良好的主干网络和模模模模化的元首级新模式,利用新样本,在不同的节点点上学习不同的节点,在新的节点上,利用不同的节点上学习任务中,利用新的模型,学习模式,学习模式,学习模式,从而将拟议的元制模块模模模模模模模模模模模模模模模模模模范式模块化模块式模块式模块式模块式模块式模块化模型化,从而巩固了我们,从而,从而,从而,从而,从而,从而,从而,从而将拟议的模型化后置工作法式样法系,从而,从而,从而可以巩固了良好的组合式工作,从而,从而,从而迅速地将。 将。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
专知会员服务
86+阅读 · 2020年8月2日
最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
相关论文
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
9+阅读 · 2018年3月10日
Top
微信扫码咨询专知VIP会员