The Weisfeiler-Leman procedure is a widely-used technique for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into 2- and 3-connected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its 3-connected components. This implies that the dimension of the algorithm needed to distinguish two given non-isomorphic graphs is at most the dimension required to distinguish non-isomorphic 3-connected components of the graphs (assuming dimension at least 2). To obtain our decomposition result, we show that, for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of the class of graphs of treewidth at most k. Using a construction by Cai, F\"urer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.


翻译:Weisfeleler- Leman 程序是一种广泛使用的图形异形测试技术,它通过迭代计算顶部图的异形-异变颜色来运作。同时,结构图形理论的一个基本工具,经常在解决图形偏形问题的方法中加以利用,是分解成2个和3个连接的组件。我们证明,2维Weisfeler-Leman 算法隐含地将一个图形分解成3个连接的组件。这意味着,区分两个给定的非异形图形所需的算法的尺寸,最多是区分图中非异形3个连接的组件(假设至少2个维度)所需的尺寸。为了获得我们的分解结果,我们显示,对于 k ⁇ 2, k- 维度算算法将K- sepreparators, e.e.e., k- 和 k- lex 将图的双色分解成形图与其他 We- tupex ktles.

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
雪球
6+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
雪球
6+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Top
微信扫码咨询专知VIP会员