The vector-balancing problem is a fundamental problem in discrepancy theory: given T vectors in $[-1,1]^n$, find a signing $\sigma(a) \in \{\pm 1\}$ of each vector $a$ to minimize the discrepancy $\| \sum_{a} \sigma(a) \cdot a \|_{\infty}$. This problem has been extensively studied in the static/offline setting. In this paper we initiate its study in the fully-dynamic setting with recourse: the algorithm sees a stream of T insertions and deletions of vectors, and at each time must maintain a low-discrepancy signing, while also minimizing the amortized recourse (the number of times any vector changes its sign) per update. For general vectors, we show algorithms which almost match Spencer's $O(\sqrt{n})$ offline discrepancy bound, with ${O}(n\cdot poly\!\log T)$ amortized recourse per update. The crucial idea is to compute a basic feasible solution to the linear relaxation in a distributed and recursive manner, which helps find a low-discrepancy signing. To bound recourse we argue that only a small part of the instance needs to be re-computed at each update. Since vector balancing has also been greatly studied for sparse vectors, we then give algorithms for low-discrepancy edge orientation, where we dynamically maintain signings for 2-sparse vectors. Alternatively, this can be seen as orienting a dynamic set of edges of an n-vertex graph to minimize the absolute difference between in- and out-degrees at any vertex. We present a deterministic algorithm with $O(poly\!\log n)$ discrepancy and $O(poly\!\log n)$ amortized recourse. The core ideas are to dynamically maintain an expander-decomposition with low recourse and then to show that, as the expanders change over time, a natural local-search algorithm converges quickly (i.e., with low recourse) to a low-discrepancy solution. We also give strong lower bounds for local-search discrepancy minimization algorithms.


翻译:矢量平衡问题是差异理论中的一个根本问题。 在 $[ 1, 1\\n$] 中, 给 T 的矢量在 $[ 1, 1\n$] 中, 找到每个矢量的签名 $\ sgrama (a)\ cdot a ndock a ⁇ incinfty} 。 这个问题在静态/ 离线设置中得到了广泛的研究 。 在本文中, 我们开始在完全动态的环境下进行研究 : 算法看到T 插入和删除矢量的流流, 每次必须保持低偏差的约会方向签名, 同时将摊销的追索( 任何矢量改变的次数) 最大限度地减少 。 对于一般矢量, 我们显示的算法几乎与 Spence $O( sentrentrentral) 的离线值一致 。 然后( ncentral poliate) oral\\\\\\\\\ t) oral disal disal a dated.

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
7+阅读 · 2021年10月19日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2020年10月12日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
通过Docker安装谷歌足球游戏环境
CreateAMind
11+阅读 · 2019年7月7日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员