Active learning is a subfield of machine learning that is devised for design and modeling of systems with highly expensive sampling costs. Industrial and engineering systems are generally subject to physics constraints that may induce fatal failures when they are violated, while such constraints are frequently underestimated in active learning. In this paper, we develop a novel active learning method that avoids failures considering implicit physics constraints that govern the system. The proposed approach is driven by two tasks: the safe variance reduction explores the safe region to reduce the variance of the target model, and the safe region expansion aims to extend the explorable region exploiting the probabilistic model of constraints. The global acquisition function is devised to judiciously optimize acquisition functions of two tasks, and its theoretical properties are provided. The proposed method is applied to the composite fuselage assembly process with consideration of material failure using the Tsai-wu criterion, and it is able to achieve zero-failure without the knowledge of explicit failure regions.


翻译:积极学习是设计用于设计和建模费用昂贵的取样系统的一个机器学习的子领域;工业和工程系统一般受到物理限制,在违反这些限制时可能导致致命失败,而在积极学习中,这种限制往往被低估;在本文件中,我们开发了一种新的积极学习方法,避免失败,因为考虑到控制该系统的隐含物理限制;拟议的方法由两项任务驱动:安全差异减少探索安全区域,以减少目标模式的差异,安全区域扩展的目的是扩大利用制约的概率模型的可探测区域;全球购置功能的设计是为了明智地优化两项任务的购置功能,并提供理论特性;拟议的方法适用于综合机能组装过程,同时考虑使用Tsai-wu标准的物质故障,在没有明显故障区域知识的情况下,能够实现零故障。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
专知会员服务
52+阅读 · 2021年6月30日
专知会员服务
51+阅读 · 2020年12月14日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月25日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年10月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年12月25日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年10月5日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年7月12日
Top
微信扫码咨询专知VIP会员