Both the notion of Property Graphs (PG) and the Resource Description Framework (RDF) are commonly used models for representing graph-shaped data. While there exist some system-specific solutions to convert data from one model to the other, these solutions are not entirely compatible with one another and none of them appears to be based on a formal foundation. In fact, for the PG model, there does not even exist a commonly agreed-upon formal definition. The aim of this document is to reconcile both models formally. To this end, the document proposes a formalization of the PG model and introduces well-defined transformations between PGs and RDF. As a result, the document provides a basis for the following two innovations: On one hand, by implementing the RDF-to-PG transformations defined in this document, PG-based systems can enable their users to load RDF data and make it accessible in a compatible, system-independent manner using, e.g., the graph traversal language Gremlin or the declarative graph query language Cypher. On the other hand, the PG-to-RDF transformation in this document enables RDF data management systems to support compatible, system-independent queries over the content of Property Graphs by using the standard RDF query language SPARQL. Additionally, this document represents a foundation for systematic research on relationships between the two models and between their query languages.


翻译:属性图(PG)概念和资源描述框架(RDF)概念都是用来代表图形形数据的常用模型。 虽然存在将数据从一个模型转换为另一个模型的某些系统特定解决方案,但这些解决方案并不完全兼容,而且似乎没有一个基于正式基础。事实上,对于PG模式,甚至没有共同商定的正式定义。本文件的目的是正式调和两种模型。为此,本文件提议将PG模式正规化,并引入PG和RDF之间定义明确的转换。结果,该文件为以下两种创新提供了基础:一方面,通过实施本文件定义的RDF-PG-PG转换,基于PG的系统系统系统系统系统系统系统能够使其用户装入RDF数据,并能够以兼容、系统独立的方式将数据输入。为此,本文件提议将PG-RDF转换为PF 系统,从而能够使用该系统化的 RDFS-L 数据库数据库, 支持该系统化的系统化数据库数据库数据库数据库的系统数据库,从而支持这一系统化的系统化的SDFS-DF数据库数据库, 数据库的系统查询关系。

0
下载
关闭预览

相关内容

资源描述框架(英语:Resource Description Framework,缩写为RDF),是万维网联盟(W3C)提出的一组标记语言的技术规范,以便更为丰富地描述和表达网络资源的内容与结构。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-哥伦比亚大学】多关系图神经网络CompGCN
专知会员服务
49+阅读 · 2020年4月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-哥伦比亚大学】多关系图神经网络CompGCN
专知会员服务
49+阅读 · 2020年4月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员