In data analysis, there continues to be a need for interpretable dimensionality reduction methods whereby instrinic meaning associated with the data is retained in the reduced space. Standard approaches such as Principal Component Analysis (PCA) and the Singular Value Decomposition (SVD) fail at this task. A popular alternative is the CUR decomposition. In an SVD-like manner, the CUR decomposition approximates a matrix $A \in \mathbb{R}^{m \times n}$ as $A \approx CUR$, where $C$ and $R$ are matrices whose columns and rows are selected from the original matrix \cite{goreinov1997theory}, \cite{mahoney2009cur}. The difficulty in constructing a CUR decomposition is in determining which columns and rows to select when forming $C$ and $R$. Current column/row selection algorithms, particularly those that rely on an SVD, become infeasible as the size of the data becomes large \cite{dong2021simpler}. We address this problem by reducing the column/row selection problem to a collection of smaller sub-problems. The basic idea is to first partition the rows/columns of a matrix, and then apply an existing selection algorithm on each piece; for illustration purposes we use the Discrete Empirical Interpolation Method (\textsf{DEIM}) \cite{sorensen2016deim}. For the first task, we consider two existing algorithms that construct a Voronoi Tessellation (VT) of the rows and columns of a given matrix. We then extend these methods to automatically adapt to the data. The result is four data-driven row/column selection methods that are well-suited for parallelization, and compatible with nearly any existing column/row selection strategy. Theory and numerical examples show the design to be competitive with the original \textsf{DEIM} routine.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员