We consider the nonparametric regression problem with multiple predictors and an additive error, where the regression function is assumed to be coordinatewise nondecreasing. We propose a Bayesian approach to make an inference on the multivariate monotone regression function, obtain the posterior contraction rate, and construct a universally consistent Bayesian testing procedure for multivariate monotonicity. To facilitate posterior analysis, we set aside the shape restrictions temporarily, and endow a prior on blockwise constant regression functions with heights independently normally distributed. The unknown variance of the error term is either estimated by the marginal maximum likelihood estimate or is equipped with an inverse-gamma prior. Then the unrestricted block heights are a posteriori also independently normally distributed given the error variance, by conjugacy. To comply with the shape restrictions, we project samples from the unrestricted posterior onto the class of multivariate monotone functions, inducing the "projection-posterior distribution", to be used for making an inference. Under an $\mathbb{L}_1$-metric, we show that the projection-posterior based on $n$ independent samples contracts around the true monotone regression function at the optimal rate $n^{-1/(2+d)}$. Then we construct a Bayesian test for multivariate monotonicity based on the posterior probability of a shrinking neighborhood of the class of multivariate monotone functions. We show that the test is universally consistent, that is, the level of the Bayesian test goes to zero, and the power at any fixed alternative goes to one. Moreover, we show that for a smooth alternative function, power goes to one as long as its distance to the class of multivariate monotone functions is at least of the order of the estimation error for a smooth function.
翻译:我们用多个预测器和添加错误来考虑非参数回归问题, 假设该回归函数是协调的, 而不是递减。 我们提出一种巴伊西亚法, 对多变单调回归函数进行推论, 获取后继收缩率, 并为多变单调性构建一个普遍一致的巴伊西亚测试程序。 为了方便后变分析, 我们暂时搁置形状限制, 并在块状恒定回归函数上放置一个前端, 并且独立分布高度。 错误期的未知差异要么由边际最大概率估计估算估算来估计, 要么在之前安装反距离伽玛。 然后, 不受限制的区块高度也是一种后继函数, 由于误差, 获得后退率, 我们从不受限制的后端到多变性单调的等级, 导致“ 预测- 内部分布 ”, 用来进行推断。 在 以 $ 美元 值 的替代值 最大零差值估算值下, 我们显示, 以 美元 底值 的投影测值 值 值 值 值 值 值 值 以 美元 以 一 的 。