We consider the nonparametric regression problem with multiple predictors and an additive error, where the regression function is assumed to be coordinatewise nondecreasing. We propose a Bayesian approach to make an inference on the multivariate monotone regression function, obtain the posterior contraction rate, and construct a universally consistent Bayesian testing procedure for multivariate monotonicity. To facilitate posterior analysis, we set aside the shape restrictions temporarily, and endow a prior on blockwise constant regression functions with heights independently normally distributed. The unknown variance of the error term is either estimated by the marginal maximum likelihood estimate or is equipped with an inverse-gamma prior. Then the unrestricted block heights are a posteriori also independently normally distributed given the error variance, by conjugacy. To comply with the shape restrictions, we project samples from the unrestricted posterior onto the class of multivariate monotone functions, inducing the "projection-posterior distribution", to be used for making an inference. Under an $\mathbb{L}_1$-metric, we show that the projection-posterior based on $n$ independent samples contracts around the true monotone regression function at the optimal rate $n^{-1/(2+d)}$. Then we construct a Bayesian test for multivariate monotonicity based on the posterior probability of a shrinking neighborhood of the class of multivariate monotone functions. We show that the test is universally consistent, that is, the level of the Bayesian test goes to zero, and the power at any fixed alternative goes to one. Moreover, we show that for a smooth alternative function, power goes to one as long as its distance to the class of multivariate monotone functions is at least of the order of the estimation error for a smooth function.


翻译:我们用多个预测器和添加错误来考虑非参数回归问题, 假设该回归函数是协调的, 而不是递减。 我们提出一种巴伊西亚法, 对多变单调回归函数进行推论, 获取后继收缩率, 并为多变单调性构建一个普遍一致的巴伊西亚测试程序。 为了方便后变分析, 我们暂时搁置形状限制, 并在块状恒定回归函数上放置一个前端, 并且独立分布高度。 错误期的未知差异要么由边际最大概率估计估算估算来估计, 要么在之前安装反距离伽玛。 然后, 不受限制的区块高度也是一种后继函数, 由于误差, 获得后退率, 我们从不受限制的后端到多变性单调的等级, 导致“ 预测- 内部分布 ”, 用来进行推断。 在 以 $ 美元 值 的替代值 最大零差值估算值下, 我们显示, 以 美元 底值 的投影测值 值 值 值 值 值 值 值 以 美元 以 一 的 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员