Resource disaggregation offers a cost effective solution to resource scaling, utilization, and failure-handling in data centers by physically separating hardware devices in a server. Servers are architected as pools of processor, memory, and storage devices, organized as independent failure-isolated components interconnected by a high-bandwidth network. A critical challenge, however, is the high performance penalty of accessing data from a remote memory module over the network. Addressing this challenge is difficult as disaggregated systems have high runtime variability in network latencies/bandwidth, and page migration can significantly delay critical path cache line accesses in other pages. This paper introduces DaeMon, the first software-transparent and robust mechanism to significantly alleviate data movement overheads in fully disaggregated systems. First, to enable scalability to multiple hardware components in the system, we enhance each compute and memory unit with specialized engines that transparently handle data migrations. Second, to achieve high performance and provide robustness across various network, architecture and application characteristics, we implement a synergistic approach of bandwidth partitioning, link compression, decoupled data movement of multiple granularities, and adaptive granularity selection in data movements. We evaluate DaeMon in a wide variety of workloads at different network and architecture configurations using a state-of-the-art accurate simulator and demonstrate that DaeMon significantly improves system performance and data access costs over the widely-adopted approach of moving data at page granularity.


翻译:资源分类为数据中心的资源规模、利用和故障处理提供了一种成本效益高的解决办法,在服务器上将硬件设备物理分离,从而在数据中心实现资源规模的扩大、利用和故障处理。服务器被设计成一个处理器、内存和存储装置的集合体,由高带宽网络连接,作为独立的故障孤立组件。然而,一个严峻的挑战是,从远程存储模块访问数据时,使用网络远程存储模块的性能处罚很高。由于分解系统在网络延缓/带宽方面具有高度的运行时间差异,因此难以应对这一挑战,而页面迁移可大大推迟其他页面的关键路径缓存线访问。本文介绍了大蒙,这是第一个在完全分解的系统中大幅减缓数据移动管理器、内存和存储装置的透明性机制。首先,为了能够对系统中多个硬件组件进行扩缩,我们用透明处理数据迁移的专用引擎加强每个折叠和记忆单元的功能。第二,要达到高性,在网络、结构和应用特点中提供稳健性,我们采用带宽度分隔、连接、分解多颗粒度数据移动、在数据移动系统上适应性弹性选择数据移动的同步方法。我们在数据库中,在数据库中,要对数据库进行大幅评估。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员