In this paper we present a decoding algorithm for algebraic geometry codes with error-correcting capacity beyond half the designed distance of the code. This algorithm comes as a fusion of the Power Error Locating Pairs algorithm for algebraic geometry codes and the technique used by Ehrhard in order to correct these codes up to half the designed distance. The decoding radius of this algorithm reaches that of Sudan algorithm, without any penalty given by the genus of the curve.
翻译:在本文中,我们提出了一个代数几何码解码算法,其错误校正能力超过代码设计距离的一半。这一算法是“为代数几何码和Ehrhard所用的技术定位等离子计算法的功率错误拼凑法”和“Ehrhard”为纠正这些代码而使用的算法,以达到设计距离的一半。这一算法的解码半径达到了苏丹算法的半径,而没有曲线的基因给予任何惩罚。