We present an accelerated, or 'look-ahead' version of the Newton-Dinkelbach method, a well-known technique for solving fractional and parametric optimization problems. This acceleration halves the Bregman divergence between the current iterate and the optimal solution within every two iterations. Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial optimization, we show a convergence bound of $O(m \log m)$ iterations; the previous best bound was $O(m^2 \log m)$ by Wang et al. (2006). (ii) We obtain a strongly polynomial label-correcting algorithm for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with $n$ variables and $m$ constraints, our algorithm runs in $O(mn)$ iterations. Every iteration takes $O(mn)$ time for general 2VPI systems, and $O(m + n \log n)$ time for the special case of deterministic Markov Decision Processes (DMDPs). This extends and strengthens a previous result by Madani (2002) that showed a weakly polynomial bound for a variant of the Newton-Dinkelbach method for solving DMDPs. (iii) We give a simplified variant of the parametric submodular function minimization result by Goemans et al. (2017).


翻译:我们展示了牛顿-丁克尔巴赫(Newton-Dinkelbach)的加速或“外观-头版”法,这是解决分数和参数优化问题的著名技术。 加速将当前迭代和最佳解决方案在每两次迭代中之间的比格曼差异减半。 利用布雷格曼的差异作为组合参数的一个潜在结合, 我们获得了三种应用领域的强烈多式算法:(一) 对于线性分数组合优化来说,我们展示了一种趋同( 美元 ) 的结合; 先前的最佳约束是王等人(2006年) 的美元( 平方米 =log m) 。 (二) 我们获得了一种强烈的多元性标签校正算法, 以解决线性可行性系统, 每种变量有两个变量(2VPI) 。 对于2VIPI系统, 我们的算法以美元( mn) 递增。 每一次调值需要O( m) 美元(m) 作为一般 2VPI 系统的总基调时间, 美元 (20- logm) 亚 亚 亚氏 亚 亚 的平调 调 的调 调 调 的调 的调 调 的调 的调值 (ral- m) 的调值 的调算法 (美元) (美元) ) 和 的美元) a SmDMDMDM) a Sl 的 的 的 的调 的 的 的 的 的 的 的 度结果。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
22+阅读 · 2021年2月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
22+阅读 · 2021年2月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员