We study how the amount of correlation between observations collected by distinct sensors/learners affects data collection and collaboration strategies by analyzing Fisher information and the Cramer-Rao bound. In particular, we consider a simple setting wherein two sensors sample from a bivariate Gaussian distribution, which already motivates the adoption of various strategies, depending on the correlation between the two variables and resource constraints. We identify two particular scenarios: (1) where the knowledge of the correlation between samples cannot be leveraged for collaborative estimation purposes and (2) where the optimal data collection strategy involves investing scarce resources to collaboratively sample and transfer information that is not of immediate interest and whose statistics are already known, with the sole goal of increasing the confidence on an estimate of the parameter of interest. We discuss two applications, IoT DDoS attack detection and distributed estimation in wireless sensor networks, that may benefit from our results.
翻译:我们研究不同的传感器/激光器所收集的观测结果之间的关联程度如何通过分析渔业信息和Cramer-Rao束线对数据收集和合作战略产生影响,特别是,我们考虑一个简单的环境,在这个环境中,两个来自双轨高斯分布的传感器样本已经促使采取各种战略,这取决于两个变量与资源制约之间的相互关系;我们确定两种特定情景:(1) 无法为协作估计目的利用对样本之间关联的了解;(2) 最佳数据收集战略涉及将稀少的资源投入合作性抽样和转让信息,而这些信息并非直接感兴趣的,而且其统计数据已经为人所知,其唯一目的是增强人们对估计相关参数的信心;我们讨论可能受益于我们的结果的两种应用,即IoT DDoS攻击探测和无线传感器网络的分布估计。