With the exponential growth of online marketplaces and user-generated content therein, aspect-based sentiment analysis has become more important than ever. In this work, we critically review a representative sample of the models published during the past six years through the lens of a practitioner, with an eye towards deployment in production. First, our rigorous empirical evaluation reveals poor reproducibility: an average 4-5% drop in test accuracy across the sample. Second, to further bolster our confidence in empirical evaluation, we report experiments on two challenging data slices, and observe a consistent 12-55% drop in accuracy. Third, we study the possibility of transfer across domains and observe that as little as 10-25% of the domain-specific training dataset, when used in conjunction with datasets from other domains within the same locale, largely closes the gap between complete cross-domain and complete in-domain predictive performance. Lastly, we open-source two large-scale annotated review corpora from a large e-commerce portal in India in order to aid the study of replicability and transfer, with the hope that it will fuel further growth of the field.


翻译:随着在线市场和用户生成的内容的指数增长,基于侧面的情绪分析比以往更加重要。在这项工作中,我们严格地审查过去六年中通过一名执业者镜头公布的模型的代表性样本,着眼于生产中的部署。首先,我们严格的实证评估显示,复制率差:在整个抽样中测试准确性平均下降4-5%。第二,为了进一步加强我们对经验评估的信心,我们报告了两个具有挑战性的数据片的实验,并观察到一个一致的12-55%的准确性下降。第三,我们研究跨域转移的可能性,并观察到只有10-25%的域特定培训数据集,与同一地区其他领域的数据集一起使用时,基本上缩小了完整跨领域和完整内部预测性业绩之间的差距。最后,我们从印度一个大型电子商务门户公开了两个有注释的大型审查公司,以协助对可复制性和转让性的研究,希望它们能够促进外地的进一步发展。

0
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员