The impact of social media on the modern world is difficult to overstate. Virtually all companies and public figures have social media accounts on popular platforms such as Twitter and Facebook. In China, the micro-blogging service provider, Sina Weibo, is the most popular such service. To influence public opinion, Weibo trolls -- the so called Water Army -- can be hired to post deceptive comments. In this paper, we focus on troll detection via sentiment analysis and other user activity data on the Sina Weibo platform. We implement techniques for Chinese sentence segmentation, word embedding, and sentiment score calculation. In recent years, troll detection and sentiment analysis have been studied, but we are not aware of previous research that considers troll detection based on sentiment analysis. We employ the resulting techniques to develop and test a sentiment analysis approach for troll detection, based on a variety of machine learning strategies. Experimental results are generated and analyzed. A Chrome extension is presented that implements our proposed technique, which enables real-time troll detection when a user browses Sina Weibo.
翻译:社交媒体对现代世界的影响很难夸大。 几乎所有公司和公共人物在Twitter和Facebook等流行平台上都有社交媒体账户。 在中国,微博客服务供应商Sina Weibo是最受欢迎的服务。 为了影响舆论,可以雇用Weibo巨人 -- -- 所谓的Water Army -- -- 来发表欺骗性的评论。在本文中,我们的重点是通过情感分析和其他用户活动数据在Sina Weibo平台上发现巨魔。我们实施了中文句分割、单词嵌入和情绪计分等技术。近年来,对巨魔探测和情绪分析进行了研究,但我们并不知道先前研究中曾考虑过根据情绪分析探测巨魔。我们利用由此产生的技术,根据各种机器学习战略,为探测巨魔开发和测试一种情绪分析方法。 实验结果产生并分析。 推出一个Chrome扩展软件,用于实施我们提议的技术,在用户浏览Sina Weibo时,可以实时检测巨魔。