In single image deblurring, the "coarse-to-fine" scheme, i.e. gradually restoring the sharp image on different resolutions in a pyramid, is very successful in both traditional optimization-based methods and recent neural-network-based approaches. In this paper, we investigate this strategy and propose a Scale-recurrent Network (SRN-DeblurNet) for this deblurring task. Compared with the many recent learning-based approaches in [25], it has a simpler network structure, a smaller number of parameters and is easier to train. We evaluate our method on large-scale deblurring datasets with complex motion. Results show that our method can produce better quality results than state-of-the-arts, both quantitatively and qualitatively.
翻译:在单一图像破碎中,“从粗到细”的“逐渐恢复金字塔不同分辨率的清晰图像”计划在传统优化方法和最近的神经网络方法方面都非常成功。在本文中,我们调查了这一战略,并为这一破碎任务提出了一个规模化经常网络(SRN-DeblurNet)建议。与[25]中最近许多基于学习的方法相比,它有一个更简单的网络结构,较少的参数,并且更容易培训。我们用复杂的动作来评估我们大规模破碎数据集的方法。结果显示,我们的方法在数量上和质量上可以产生比最新艺术质量更好的质量结果。