In this study, a sensor fusion based GNSS spoofing attack detection framework is presented that consists of three concurrent strategies for an autonomous vehicle (AV): (i) prediction of location shift, (ii) detection of turns (left or right), and (iii) recognition of motion state (including standstill state). Data from multiple low-cost in-vehicle sensors (i.e., accelerometer, steering angle sensor, speed sensor, and GNSS) are fused and fed into a recurrent neural network model, which is a long short-term memory (LSTM) network for predicting the location shift, i.e., the distance that an AV travels between two consecutive timestamps. We have then combined k-Nearest Neighbors (k-NN) and Dynamic Time Warping (DTW) algorithms to detect turns using data from the steering angle sensor. In addition, data from an AV's speed sensor is used to recognize the AV's motion state including the standstill state. To prove the efficacy of the sensor fusion-based attack detection framework, attack datasets are created for three unique and sophisticated spoofing attacks turn by turn, overshoot, and stop using the publicly available real-world Honda Research Institute Driving Dataset (HDD). Our analysis reveals that the sensor fusion-based detection framework successfully detects all three types of spoofing attacks within the required computational latency threshold.


翻译:在本研究中,介绍了基于全球导航卫星系统潜伏攻击探测的传感器聚合框架,其中包括自主飞行器(AV)的三个同时战略:(一) 地点变化预测,(二) 旋转(左或右)的探测,(三) 运动状态的识别(包括停顿状态),来自多价低价车辆传感器(即加速计、方向角传感器、速度传感器和全球导航卫星系统)的数据被结合并输入一个经常性神经网络模型,这是一个用于预测位置变化的长期短期内存(LSTM)网络,即AV在连续两个时标之间飞行的距离。我们随后将K-Nearest Neighbors(k-NNN)和动态时间扭曲(DTW)的算法结合起来,以便利用方向传感器的数据来检测旋转数据。此外,AV的速度传感器的数据被用于识别基于laV的动作状态,包括停顿状态。为了证明基于传感器的聚变攻击探测框架的功效,攻击数据设置于连续两个时段之间的距离。我们用三个尖端的服务器对三个可使用的数据探测框架,从而将可获取的SDDR的S-DS-revelop srestring Stal sreal development Stal development astraction astraction astraction straction straction sturding sturding sturding the sal

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
专知会员服务
31+阅读 · 2021年6月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年1月11日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
12+阅读 · 2021年6月21日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
6+阅读 · 2019年1月11日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员