Autonomous systems often operate in environments where the behavior of multiple agents is coordinated by a shared global state. Reliable estimation of the global state is thus critical for successfully operating in a multi-agent setting. We introduce agent-aware state estimation -- a framework for calculating indirect estimations of state given observations of the behavior of other agents in the environment. We also introduce transition-independent agent-aware state estimation -- a tractable class of agent-aware state estimation -- and show that it allows the speed of inference to scale linearly with the number of agents in the environment. As an example, we model traffic light classification in instances of complete loss of direct observation. By taking into account observations of vehicular behavior from multiple directions of traffic, our approach exhibits accuracy higher than that of existing traffic light-only HMM methods on a real-world autonomous vehicle data set under a variety of simulated occlusion scenarios.
翻译:自主系统通常在多个物剂行为由共享的全球状态协调的环境中运作。 因此,可靠地估计全球状态对于在多剂环境下成功运作至关重要。 我们引入了代理觉悟状态估计, 这是一种计算国家间接估计的框架, 因为它观测到环境中其他物剂的行为。 我们还引入了过渡独立的物剂意识状态估计 -- -- 一种可移动的物剂意识状态估计类别 -- -- 并表明它允许参照环境物剂数量进行线性缩放的速度。 例如, 我们模拟交通灯分类, 以完全丧失直接观测的物剂为例。 通过考虑从多种交通方向观测到的车辆行为, 我们的方法在各种模拟封闭情景下, 在现实世界的自主车辆数据集中, 显示比现有的仅使用光度HMMM方法的准确性更高。