In this paper we study the smooth strongly convex minimization problem $\min_{x}\min_y f(x,y)$. The existing optimal first-order methods require $\mathcal{O}(\sqrt{\max\{\kappa_x,\kappa_y\}} \log 1/\epsilon)$ of computations of both $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$, where $\kappa_x$ and $\kappa_y$ are condition numbers with respect to variable blocks $x$ and $y$. We propose a new algorithm that only requires $\mathcal{O}(\sqrt{\kappa_x} \log 1/\epsilon)$ of computations of $\nabla_x f(x,y)$ and $\mathcal{O}(\sqrt{\kappa_y} \log 1/\epsilon)$ computations of $\nabla_y f(x,y)$. In some applications $\kappa_x \gg \kappa_y$, and computation of $\nabla_y f(x,y)$ is significantly cheaper than computation of $\nabla_x f(x,y)$. In this case, our algorithm substantially outperforms the existing state-of-the-art methods.
翻译:在本文中, 我们研究平滑的 convex 最小化问题 $\ min ⁇ x\ min_ y f( x, y) $ 。 目前最佳的第一阶方法需要$\ mathcal{ O},\ kapa_ y\ log_ y}\ log 1/\ eepsilon $\ nabla_ x f( x, y) 和 $\ nabla_ y f( x, y) $( kappa_ y) 。 $\ kappa_ 美元是变量块的状态值 $x 美元和美元。 我们提议新的算法, 只需要$\ max cal_ kappa_ fx 计算 $( xx) f. (sqr) 和 $( k) a- f. a- case_ a_ a_ fx_ f. a- case_ deal_ a_ fx_ f. a_ a a a prent_ case_ fx_ f. a- case_ f. a_ fx a_ f.