Models of actual causality leverage domain knowledge to generate convincing diagnoses of events that caused an outcome. It is promising to apply these models to diagnose and repair run-time property violations in cyber-physical systems (CPS) with learning-enabled components (LEC). However, given the high diversity and complexity of LECs, it is challenging to encode domain knowledge (e.g., the CPS dynamics) in a scalable actual causality model that could generate useful repair suggestions. In this paper, we focus causal diagnosis on the input/output behaviors of LECs. Specifically, we aim to identify which subset of I/O behaviors of the LEC is an actual cause for a property violation. An important by-product is a counterfactual version of the LEC that repairs the run-time property by fixing the identified problematic behaviors. Based on this insights, we design a two-step diagnostic pipeline: (1) construct and Halpern-Pearl causality model that reflects the dependency of property outcome on the component's I/O behaviors, and (2) perform a search for an actual cause and corresponding repair on the model. We prove that our pipeline has the following guarantee: if an actual cause is found, the system is guaranteed to be repaired; otherwise, we have high probabilistic confidence that the LEC under analysis did not cause the property violation. We demonstrate that our approach successfully repairs learned controllers on a standard OpenAI Gym benchmark.
翻译:实际因果性模型利用领域知识来生成有说服力的事件诊断,以确定事件造成的结果。将这些模型应用于诊断和修复带有学习启发式组件(LEC)的运行时属性违规的网络物理系统(CPS)是有前途的。但是,考虑到LEC的高度多样性和复杂性,在可伸缩的实际因果性模型中编码领域知识(例如CPS动态)以生成有用的修复建议是具有挑战性的。在本文中,我们将因果诊断集中于LEC的输入/输出行为。具体而言,我们旨在确定LEC的IO行为子集是产生属性违规的实际原因。一个重要的副作用是LEC的反事实版本,通过修复已识别的问题行为来修复运行时属性。基于这些洞见,我们设计了一个两步诊断管道:(1) 构建和Halpern-Pearl因果模型,反映了组件的IO行为对属性结果的依赖,(2) 在模型上执行搜索,寻找实际原因和相应的修复。我们证明了我们的管道具有以下保证:如果找到实际原因,则系统保证得到修复;否则,我们有很高的概率信心认为分析中的LEC没有引起属性违规。我们证明了我们的方法成功地修复了标准的OpenAI Gym基准测试中的学习控制器。