Distributed in-memory key-value (KV) stores are embracing the disaggregated memory (DM) architecture for higher resource utilization. However, existing KV stores on DM employ a semi-disaggregated design that stores KV pairs on DM but manages metadata with monolithic metadata servers, hence still suffering from low resource efficiency on metadata servers. To address this issue, this paper proposes FUSEE, a FUlly memory-diSaggrEgated KV StorE that brings disaggregation to metadata management. FUSEE replicates metadata, i.e., the index and memory management information, on memory nodes, manages them directly on the client side, and handles complex failures under the DM architecture. To scalably replicate the index on clients, FUSEE proposes a client-centric replication protocol that allows clients to concurrently access and modify the replicated index. To efficiently manage disaggregated memory, FUSEE adopts a two-level memory management scheme that splits the memory management duty among clients and memory nodes. Finally, to handle the metadata corruption under client failures, FUSEE leverages an embedded operation log scheme to repair metadata with low log maintenance overhead. We evaluate FUSEE with both micro and YCSB hybrid benchmarks. The experimental results show that FUSEE outperforms the state-of-the-art KV stores on DM by up to 4.5 times with less resource consumption.


翻译:为解决这一问题,本文件建议采用一个将存储责任分解到元数据管理的软存储模块(FUSE),一个将存储责任分解到元数据管理的软存储模块。FUSE复制了元数据管理系统,即指数和记忆管理信息,关于记忆节点的信息,直接管理客户,并处理管理管理结构下的复杂故障。为了在客户上大规模复制索引,FUSE提出了一个以客户为中心的复制协议,允许客户同时访问和修改复制的索引。为了有效管理分类记忆,FUSEE采用了一个将存储管理责任分解到客户和记忆节点的双级存储管理机制。最后,FUSEE复制了元数据,即,在存储节点上,索引和记忆管理信息,直接管理客户方面,处理客户方面的复杂故障。为了在管理结构下大规模复制指数,FUSEEE提出了一个以客户为中心的复制协议,使客户能够同时访问和修改复制的索引。为了有效地管理分类记忆,FUSEEE, FUSE采取了一个将存储责任分解到客户之间和记忆节点。最后,FUSEEEEEE利用一个嵌嵌入的操作日日志计划,用低IMSBSUDIS维护成本。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
60+阅读 · 2020年3月19日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年8月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年8月31日
Top
微信扫码咨询专知VIP会员