The $K$-core of a graph is the unique maximum subgraph within which each vertex connects to at least $K$ other vertices. The $K$-core optimal attack problem asks to construct a minimum-sized set of vertices whose removal results in the complete collapse of the $K$-core. In this paper, we construct a hierarchical cycle-tree packing model which converts a long-range correlated $K$-core pruning process into static patterns and analyze this model through the replica-symmetric (RS) cavity method of statistical physics. The cycle-tree guided attack (CTGA) message-passing algorithm exhibits superior performance on random regular and Erdos-Renyi graphs. It provides new upper bounds on the minimal cardinality of the $K$-core attack set. The model of this work may be extended to construct optimal initial conditions for other irreversible dynamical processes.
翻译:图表的 $K$- 核心是每个顶端连接至少为$K美元的其他脊椎的独特最大子集。 $K$- 核心最佳攻击问题要求构建一套最小尺寸的脊椎, 其去除导致 $K美元- 核心完全崩溃。 在本文中, 我们构建一个等级循环树包装模型, 将一个长距离关联 $K$- 核心切割过程转换成静态模式, 并通过统计物理的复制对称( RS) 洞穴法分析这一模型。 循环树引导( CTGA) 信息传递算法显示随机常规和 Erdos- Renyi 图形的高级性能。 它为 $K- 核心攻击组合的最小基点提供了新的上限 。 这项工作的模式可以扩展, 为其他不可逆转的动态过程建立最佳初始条件 。</s>