Although the security of automatic speaker verification (ASV) is seriously threatened by recently emerged adversarial attacks, there have been some countermeasures to alleviate the threat. However, many defense approaches not only require the prior knowledge of the attackers but also possess weak interpretability. To address this issue, in this paper, we propose an attacker-independent and interpretable method, named learnable mask detector (LMD), to separate adversarial examples from the genuine ones. It utilizes score variation as an indicator to detect adversarial examples, where the score variation is the absolute discrepancy between the ASV scores of an original audio recording and its transformed audio synthesized from its masked complex spectrogram. A core component of the score variation detector is to generate the masked spectrogram by a neural network. The neural network needs only genuine examples for training, which makes it an attacker-independent approach. Its interpretability lies that the neural network is trained to minimize the score variation of the targeted ASV, and maximize the number of the masked spectrogram bins of the genuine training examples. Its foundation is based on the observation that, masking out the vast majority of the spectrogram bins with little speaker information will inevitably introduce a large score variation to the adversarial example, and a small score variation to the genuine example. Experimental results with 12 attackers and two representative ASV systems show that our proposed method outperforms five state-of-the-art baselines. The extensive experimental results can also be a benchmark for the detection-based ASV defenses.


翻译:尽管最近出现的对抗性攻击严重威胁了自动扬声器核查(ASV)的安全,但还是有一些缓解威胁的对策,然而,许多防御方法不仅需要攻击者事先了解,而且容易解释。为了解决这个问题,我们在本文件中建议采用攻击者独立和可解释的方法,即称为可学习的面具探测器(LMD),将对抗性例子与真实的例子区分开来。它使用评分差异作为辨别对抗性例子的指标,其中得分差异是原声频记录ASV分数与从隐藏的复杂光谱图合成的音频之间的绝对差异。得分变异探测器的核心组成部分是用神经网络生成蒙面光谱光谱光谱光谱光谱光谱光谱光谱谱。神经网络只需要真正的培训例子,因此它是一种攻击者独立的方法。它的可解释性是,神经网络受过培训,以尽量减少目标的ASVV的得分差,并最大限度地增加真实培训示例。它的基础是基于观测结果,用大量的数据,掩盖了大规模的实验性基准值测量结果,并且用最起码的实验性标准显示我们最起码的测试方法的分数。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员