Modeling heterogeneity by extraction and exploitation of high-order information from heterogeneous information networks (HINs) has been attracting immense research attention in recent times. Such heterogeneous network embedding (HNE) methods effectively harness the heterogeneity of small-scale HINs. However, in the real world, the size of HINs grow exponentially with the continuous introduction of new nodes and different types of links, making it a billion-scale network. Learning node embeddings on such HINs creates a performance bottleneck for existing HNE methods that are commonly centralized, i.e., complete data and the model are both on a single machine. To address large-scale HNE tasks with strong efficiency and effectiveness guarantee, we present \textit{Decentralized Embedding Framework for Heterogeneous Information Network} (DeHIN) in this paper. In DeHIN, we generate a distributed parallel pipeline that utilizes hypergraphs in order to infuse parallelization into the HNE task. DeHIN presents a context preserving partition mechanism that innovatively formulates a large HIN as a hypergraph, whose hyperedges connect semantically similar nodes. Our framework then adopts a decentralized strategy to efficiently partition HINs by adopting a tree-like pipeline. Then, each resulting subnetwork is assigned to a distributed worker, which employs the deep information maximization theorem to locally learn node embeddings from the partition it receives. We further devise a novel embedding alignment scheme to precisely project independently learned node embeddings from all subnetworks onto a common vector space, thus allowing for downstream tasks like link prediction and node classification.
翻译:通过提取和利用不同信息网络(HINs)的高端信息来建模异质性,这在近期引起了巨大的研究关注。这种混杂的嵌入网络(HNE)方法有效地利用小规模HIN的异质性。然而,在现实世界中,随着不断引入新的节点和不同类型的链接,HIN的大小会成倍增长,使它成为10亿级的网络。学习嵌入这种 HINs的节点为现有的HNE方法创造了一个性能瓶颈,这些方法通常集中化,即完整的数据和模型都同时存在于一个单一的机器上。为了以高效的效率和效力保证解决大规模HNEE(HNE)任务,我们在本文中介绍了HIN的分散化嵌入框架。在DeHIN中,我们生成了一个分布式平行的管道,利用超光度测量来将它与HNEEO任务平行化。DeHIN是一个保护分区机制,从一个创新的大型HINSde dede dede develop 链接到一个共同的Outere Streal Streal Streal commal commal commissional 。因此, 将每个Olievation 都通过一个高端的高级的自动学习一个高端的轨道到一个直径径流化的直径流化的直径径流化的轨道,从而将一个直径流到一个直径流式的路径,通过一个直径流到一个直径流式的直径流式的直线图,从而学习到一个直径流式的直线图。