Exponential growth in embedded systems is driving the research imperative to develop fuzzers to automate firmware testing to uncover software bugs and security vulnerabilities. But, employing fuzzing techniques in this context present a uniquely challenging proposition; a key problem is the need to deal with the diverse and large number of peripheral communications in an automated testing framework. Recent fuzzing approaches: i) employ re-hosting methods by executing code in an emulator because fuzzing on resource limited embedded systems is slow and unscalable; and ii) integrate models of hardware behaviour to overcome the challenges faced by the massive input-space to be explored created by peripheral devices and to generate inputs that are effective in aiding a fuzzer to make progress. Our efforts expounds upon program execution behaviours unique to firmware to address the resulting input-space search problem. The techniques we propose improve the fuzzer's ability to generate values likely to progress execution and avoids time consumed on mutating inputs that are functionally equivalent to other test cases. We demonstrate the methods are highly efficient and effective at overcoming the input-space search problem. Our emulation-based implementation, Ember-IO, when compared to the existing state-of-the-art fuzzing framework across 21 firmware binaries, demonstrates up to 255% improvement in blocks covered. Further Ember-IO discovered 6 new bugs in the real-world firmware, previously not identified by state-of-the-art fuzzing frameworks. Importantly, Ember-IO integrated with the state-of-the-art fuzzer, Fuzzware, demonstrates similar or improved coverage across all firmware binaries whilst reproducing 3 of the 6 new bugs discovered by Ember-IO.


翻译:嵌入系统内存系统中的显微增长正在推动研究的当务之急,即开发模糊器,将固态软件测试自动化,以发现软件错误和安全弱点。 但是,在此背景下使用模糊技术,提出了一个独特的富有挑战性的建议;一个关键问题是需要在自动测试框架内处理多种和大量外围通信。最近的模糊方法:i)在模拟器中执行代码,采用重新接收方法,因为对资源有限的嵌入系统进行模糊不清的缓慢和无法伸缩;ii)整合硬件行为模型,以克服即将通过外围装置探索的大规模输入空间所面临的挑战,并生成能够有效帮助模糊器取得进展的投入。我们的努力阐明了程序执行行为的独特性,以固态软件处理由此产生的输入空间搜索问题。我们提议的方法是提高模糊器生成可能推进执行的值的能力,避免对与其它测试案例相同的变异性投入消耗时间。我们证明这些方法在克服输入空间中由外围装置所生成的大规模输入空间搜索问题时是高效和有效的。我们的努力,在公司内存的精度上,在公司内存的精度框架中显示,在公司内部的升级,在公司内部内部内部内部,在前的升级框架内,在新的容器内,以显示新的显示新的升级。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员