The public interest in accurate scientific communication, underscored by recent public health crises, highlights how content often loses critical pieces of information as it spreads online. However, multi-platform analyses of this phenomenon remain limited due to challenges in data collection. Collecting mentions of research tracked by Altmetric LLC, we examine information retention in the over 4 million online posts referencing 9,765 of the most-mentioned scientific articles across blog sites, Facebook, news sites, Twitter, and Wikipedia. To do so, we present a burst-based framework for examining online discussions about science over time and across different platforms. To measure information retention we develop a keyword-based computational measure comparing an online post to the scientific article's abstract. We evaluate our measure using ground truth data labeled by within field experts. We highlight three main findings: first, we find a strong tendency towards low levels of information retention, following a distinct trajectory of loss except when bursts of attention begin in social media. Second, platforms show significant differences in information retention. Third, sequences involving more platforms tend to be associated with higher information retention. These findings highlight a strong tendency towards information loss over time - posing a critical concern for researchers, policymakers, and citizens alike - but suggest that multi-platform discussions may improve information retention overall.


翻译:最近公共卫生危机凸显了公众对准确科学通信的兴趣,这种关注在近期公共卫生危机中得到了强调,突出了内容在网上传播时往往会丢失重要信息。然而,由于数据收集方面的挑战,对这一现象的多平台分析仍然有限。收集了阿尔泰克律己所跟踪的研究的提及,我们研究了400多万个在线文章中的信息保留情况,其中引用了博客网站、脸书、新闻网站、推特和维基百科上9 765篇最著名的科学文章。为此,我们提出了一个基于破碎的框架,用于审查关于科学的在线讨论以及不同平台的在线讨论。为了衡量信息保留情况,我们开发了一个基于关键词的计算尺度,将在线文章与科学文章的抽象内容进行比较。我们利用实地专家贴上标签的地面真相数据评估了我们的措施。我们突出了三个主要调查结果:首先,我们发现一种明显的信息保留率低的趋势,除了社会媒体开始关注时之外,我们发现一种明显的损失趋势。第二,平台显示信息保留方面存在重大差异。第三,涉及更多平台的顺序往往与更高的信息保留情况相联系。这些发现,我们强调一种强烈的信息损失趋势,即随着时间的推移形成一种强烈的强烈的倾向,但表明对研究人员、决策者和公民都表示出一种关键的关注。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月29日
Concept-centric Software Development
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
Top
微信扫码咨询专知VIP会员