The public interest in accurate scientific communication, underscored by recent public health crises, highlights how content often loses critical pieces of information as it spreads online. However, multi-platform analyses of this phenomenon remain limited due to challenges in data collection. Collecting mentions of research tracked by Altmetric LLC, we examine information retention in the over 4 million online posts referencing 9,765 of the most-mentioned scientific articles across blog sites, Facebook, news sites, Twitter, and Wikipedia. To do so, we present a burst-based framework for examining online discussions about science over time and across different platforms. To measure information retention we develop a keyword-based computational measure comparing an online post to the scientific article's abstract. We evaluate our measure using ground truth data labeled by within field experts. We highlight three main findings: first, we find a strong tendency towards low levels of information retention, following a distinct trajectory of loss except when bursts of attention begin in social media. Second, platforms show significant differences in information retention. Third, sequences involving more platforms tend to be associated with higher information retention. These findings highlight a strong tendency towards information loss over time - posing a critical concern for researchers, policymakers, and citizens alike - but suggest that multi-platform discussions may improve information retention overall.
翻译:最近公共卫生危机凸显了公众对准确科学通信的兴趣,这种关注在近期公共卫生危机中得到了强调,突出了内容在网上传播时往往会丢失重要信息。然而,由于数据收集方面的挑战,对这一现象的多平台分析仍然有限。收集了阿尔泰克律己所跟踪的研究的提及,我们研究了400多万个在线文章中的信息保留情况,其中引用了博客网站、脸书、新闻网站、推特和维基百科上9 765篇最著名的科学文章。为此,我们提出了一个基于破碎的框架,用于审查关于科学的在线讨论以及不同平台的在线讨论。为了衡量信息保留情况,我们开发了一个基于关键词的计算尺度,将在线文章与科学文章的抽象内容进行比较。我们利用实地专家贴上标签的地面真相数据评估了我们的措施。我们突出了三个主要调查结果:首先,我们发现一种明显的信息保留率低的趋势,除了社会媒体开始关注时之外,我们发现一种明显的损失趋势。第二,平台显示信息保留方面存在重大差异。第三,涉及更多平台的顺序往往与更高的信息保留情况相联系。这些发现,我们强调一种强烈的信息损失趋势,即随着时间的推移形成一种强烈的强烈的倾向,但表明对研究人员、决策者和公民都表示出一种关键的关注。</s>