We evaluate OpenAI's o1-preview and o1-mini models, benchmarking their performance against the earlier GPT-4o model. Our evaluation focuses on their ability to detect vulnerabilities in real-world software by generating structured inputs that trigger known sanitizers. Using DARPA's AI Cyber Challenge (AIxCC) framework and the Nginx challenge project--a deliberately modified version of the widely-used Nginx web server--we create a well-defined yet complex environment for testing LLMs on automated vulnerability detection (AVD) tasks. Our results show that the o1-preview model significantly outperforms GPT-4o in both success rate and efficiency, especially in more complex scenarios.
翻译:暂无翻译