A fault-tolerant quantum computer must decode and correct errors faster than they appear. The faster errors can be corrected, the more time the computer can do useful work. The Union-Find (UF) decoder is promising with an average time complexity slightly higher than $O(d^3)$. We report a distributed version of the UF decoder that exploits parallel computing resources for further speedup. Using an FPGA-based implementation, we empirically show that this distributed UF decoder has a sublinear average time complexity with regard to $d$, given $O(d^3)$ parallel computing resources. The decoding time per measurement round decreases as $d$ increases, a first time for a quantum error decoder. The implementation employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid tree-grid structure. Using Xilinx's cycle-accurate simulator, we present cycle-accurate decoding time for $d$ up to 15, with the phenomenological noise model with $p=0.1\%$. We are able to implement $d$ up to 7 with a Xilinx ZC106 FPGA, for which an average decoding time is 120 ns per measurement round. Since the decoding time per measurement round of Helios decreases with $d$, Helios can decode a surface code of arbitrarily large $d$ without a growing backlog.
翻译:容错量量计计算机必须比表面显示的更快地解码和纠正错误。 错误可以更快地纠正, 计算机可以做有用的工作的时间越长。 联盟- Find( FUF) 解码器以平均时间复杂性略高于$O( d=3) 美元为前景。 我们报告一个分布式的UF解码器解码器版本, 利用平行计算资源来进一步加快速度。 我们使用基于 FPGA 的实施, 实验性地显示, 这个分布式的UF解码器平均时间复杂度为$( $O( d=3) 3), 并且计算机平行计算资源的时间越多。 每轮测量周期的解码时间越少, 美元越多, 量子值错误解码器越少。 使用一个叫做太阳系的平行计算资源到混合树网结构。 使用Xlinx的循环扫描模拟模拟器, 我们的循环解码解码时间为$=0.1美元, 10美元/ 美元。 我们的计算速度越快, 10美元到x 10x 水平的计算, 10x 10x 美元, 美元的计算为x 。