Due to the characteristics of Information and Communications Technology (ICT) products, the critical information of ICT devices is often summarized in big tabular data shared across supply chains. Therefore, it is critical to automatically interpret tabular structures with the surging amount of electronic assets. To transform the tabular data in electronic documents into a machine-interpretable format and provide layout and semantic information for information extraction and interpretation, we define a Table Structure Recognition (TSR) task and a Table Cell Type Classification (CTC) task. We use a graph to represent complex table structures for the TSR task. Meanwhile, table cells are categorized into three groups based on their functional roles for the CTC task, namely Header, Attribute, and Data. Subsequently, we propose a multi-task model to solve the defined two tasks simultaneously by using the text modal and image modal features. Our experimental results show that our proposed method can outperform state-of-the-art methods on ICDAR2013 and UNLV datasets.
翻译:由于信息和通信技术(信通技术)产品的特点,信通技术设备的关键信息往往被汇总在跨供应链共享的大型表格数据中,因此,随着电子资产数量激增,必须自动解释表格结构,因此,将电子文件中的表格数据转换成机器解释格式,并提供用于信息提取和解释的版式和语义信息,我们界定了表格结构识别任务和表格细胞类型分类任务。我们使用图表来代表TSR任务的复杂表格结构。同时,表格单元格根据其在气候技术任务中的职能作用分为三类,即标题、属性和数据。随后,我们提出了一个多任务模式,通过使用文本模式和图像模式功能,同时解决已确定的两项任务。我们的实验结果表明,我们拟议的方法可以超越ICDAR2013和UNLV数据集方面的最新方法。