Both image-caption pairs and translation pairs provide the means to learn deep representations of and connections between languages. We use both types of pairs in MURAL (MUltimodal, MUltitask Representations Across Languages), a dual encoder that solves two tasks: 1) image-text matching and 2) translation pair matching. By incorporating billions of translation pairs, MURAL extends ALIGN (Jia et al. PMLR'21)--a state-of-the-art dual encoder learned from 1.8 billion noisy image-text pairs. When using the same encoders, MURAL's performance matches or exceeds ALIGN's cross-modal retrieval performance on well-resourced languages across several datasets. More importantly, it considerably improves performance on under-resourced languages, showing that text-text learning can overcome a paucity of image-caption examples for these languages. On the Wikipedia Image-Text dataset, for example, MURAL-base improves zero-shot mean recall by 8.1% on average for eight under-resourced languages and by 6.8% on average when fine-tuning. We additionally show that MURAL's text representations cluster not only with respect to genealogical connections but also based on areal linguistics, such as the Balkan Sprachbund.
翻译:图像插图配对和翻译配对都提供了学习语言之间深层表达和连接的手段。 我们使用MURAL( Multimodal, Multitask Productions over Lebes) 两种配对的两种配对( MURAL, Multitask Guides ), 这两类配对可以解决两个任务:(1) 图像文本匹配和 2 翻译配对。 MURAL 包含数十亿对翻译配对, 扩展了 ALIGIN( Jia et al. PMLR'21) - 从18亿个噪音图像- 文本配对中学习的最先进的双倍编码。 当使用相同的编码器时, MURAL的性能匹配或超过 ALIGINT在多个数据集资源充足的语言上的跨模式检索性能。 更重要的是, 它大大改进了资源不足的语言的性能, 表明文本学习可以克服这些语言的缺乏性能实例。 例如, MURAL- Text数据集平均将8种资源不足的语言的性能提高0.1%, 而平均只有6. 。 我们在Balalimalimal 上显示MAL 的图像显示, 也显示MAL- sqalmalbormas