In recent years, machine learning methods have been used to assist scientists in scientific research. Human scientific theories are based on a series of concepts. How machine learns the concepts from experimental data will be an important first step. We propose a hybrid method to extract interpretable physical concepts through unsupervised machine learning. This method consists of two stages. At first, we need to find the Betti numbers of experimental data. Secondly, given the Betti numbers, we use a variational autoencoder network to extract meaningful physical variables. We test our protocol on toy models and show how it works.
翻译:近年来,利用机器学习方法协助科学家进行科学研究。人类科学理论基于一系列概念。机器如何从实验数据中学习这些概念将是重要的第一步。我们提出一种混合方法,通过不受监督的机器学习来提取可解释的物理概念。这种方法包括两个阶段。首先,我们需要找到实验数据的贝蒂数字。第二,根据贝蒂数字,我们使用一个可变自动编码网络来提取有意义的物理变量。我们测试我们的玩具模型协议并展示它是如何运作的。