Large language models (LLMs) are transforming cellular biology by enabling the development of "virtual cells"--computational systems that represent, predict, and reason about cellular states and behaviors. This work provides a comprehensive review of LLMs for virtual cell modeling. We propose a unified taxonomy that organizes existing methods into two paradigms: LLMs as Oracles, for direct cellular modeling, and LLMs as Agents, for orchestrating complex scientific tasks. We identify three core tasks--cellular representation, perturbation prediction, and gene regulation inference--and review their associated models, datasets, evaluation benchmarks, as well as the critical challenges in scalability, generalizability, and interpretability.
翻译:暂无翻译