This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text. To leverage information from text pairs, we introduce a supervised model named dual directional learning (DDL). Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning; however, the combined model suffers from a cold-start problem. To combat this issue, we propose to deal with better weight initialisation, leading to a two-stage training scheme named knowledge reinforced training. Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (DDL and Transformer) by a significant margin.
翻译:本文探索了半监督参数生成的深潜潜变数模型, 缺少的目标对是一个潜在的参数序列。 我们提出了一个新的未经监督的模型, 名为变异序列自动编码重建( VSAR), 用于对观察到的文本进行潜在序列推断。 为了利用文本对的信息, 我们引入了一个名为双向定向学习( DDL)的监管模型。 将VSAR与DDL( DDL+VSAR)相结合, 使我们能够进行半监督学习; 但是, 合并模型存在一个冷却的启动问题。 为了解决这一问题, 我们提议处理更好的权重初始化, 导致一个称为知识强化培训的两阶段培训计划。 我们的经验评估表明, 合并模型能产生与全数据最新监管基线的竞争性性能。 此外, 在只有一小部分贴有标签的对子( DDL和变压器) 能够持续以显著的幅度超越强大的监管模型基线( DDL和变压器) 。