项目名称: 原子层沉积稀土氧化物和硅酸盐纳米复合薄膜硅基MOS电致发光器件的研究

项目编号: No.61275056

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 孙甲明

作者单位: 南开大学

项目金额: 82万元

中文摘要: 采用原子层沉积技术制备掺杂稀土(Gd、Y或者Lu)氧化物和硅酸盐纳米复合栅层硅基MOS电致发光器件。用电学和发光性能互补的氧化硅和稀土氧化物材料,从原子层尺度精确配比构建高效率纳米层状复合电致发光薄膜,进一步利用高温退火合成含纳米层状组分变化结构的稀土硅酸盐复合发光材料。研究纳米层状结构的量子尺寸效应以及硅与稀土原子层数比例变化对电致发光效率的影响。利用吸收、发射和激发光谱分析纳米复合材料的光学带隙、发光中心和缺陷能级的变化规律;同时利用I-V和C-V特性研究复合材料的载流子传导方式、有效介电常数、漏电流、击穿场强和可移动电荷等电输运性质随纳米层状结构的变化情况;用能带工程方法设计稀土单原子层调制掺杂以及稀土硅酸盐多量子阱级联式电致发光器件,协同提高电致发光效率和电注入稳定性。为硅集成光电子芯片研制与CMOS工艺兼容的高效率红外和可见电致发光器件。

中文关键词: 硅基发光;稀土发光;稀土硅酸盐;MOS结构;电致发光

英文摘要: MOS electroluminescence (EL)devices with doped rare earth (Gd,Y or Lu)oxide and silicate composite layers are prepared by atomic layer deposition technology. Efficient EL nanolaminates will be precisely constructed by atomic layer scale mixing up silicon oxide and rare earth oxide atomic layers with complementary electric and optical properties. Rare earth silicates phosphor films containging nanolaminate structures are synthesized by high temperature annealing. The influence of the composition and quamtum size effect on the EL efficiency of the nanolaminates will be studied.The optical band gap, the energy levels of the impurities and defects will be analyzed by the absorption,emission and excitation spectroscopy. The influence of the nanolaminate composition on the electric properties,such as carrier transport, effective dielectric contants,leakage current,breakdown electric field strength as well as the mobile charges are studied by the I-V and C-V characteristics. Light emission from the band gap engineered modulation doping structures and rare earth silicate multiple quantum well cascade structures will be studied for increasing the EL efficiency and the stability of the current injection. CMOS compatible efficient infrared and visible MOS LEDs will be proposed for silicon integrated optoelectronic chips

英文关键词: silicon light emission;rare earth luminescence;rare earth silicate;MOS structure;electroluminescence

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
17+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2021年2月8日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月16日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
13+阅读 · 2021年5月25日
小贴士
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
17+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2021年2月8日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员