We propose a new learning algorithm to train spiking neural networks (SNN) using conventional artificial neural networks (ANN) as proxy. We couple two SNN and ANN networks, respectively, made of integrate-and-fire (IF) and ReLU neurons with the same network architectures and shared synaptic weights. The forward passes of the two networks are totally independent. By assuming IF neuron with rate-coding as an approximation of ReLU, we backpropagate the error of the SNN in the proxy ANN to update the shared weights, simply by replacing the ANN final output with that of the SNN. We applied the proposed proxy learning to deep convolutional SNNs and evaluated it on two benchmarked datasets of Fahion-MNIST and Cifar10 with 94.56% and 93.11% classification accuracy, respectively. The proposed networks could outperform other deep SNNs trained with tandem learning, surrogate gradient learning, or converted from deep ANNs. Converted SNNs require long simulation times to reach reasonable accuracies while our proxy learning leads to efficient SNNs with much shorter simulation times.


翻译:我们提出一个新的学习算法,用传统的人工神经网络(ANN)作为代理来培训神经网络(SNN),用传统人造神经网络(ANN)来培训神经网络(SNN),我们将两个SNN和ANN网络(ANN)分别合并成综合与火(IF)和RELU神经网络(RLU),使用相同的网络架构和共享合成重量。这两个网络的前身是完全独立的。假设IF神经与比率编码是RELU的近似值,我们支持代理ANN的SNN错误来更新共享的重量,只是用SNNN取代了AN的最后输出。我们把拟议的代理学习应用到深革命性 SNNP(I) 和 Cifar10 (分别为94.56%和93.11%的分类精度) 两个基准数据集。提议的网络可以比其他经过同步学习、模拟梯度学习或从深层ANNW转换的深层SNNP(S) 。转换 SNNS需要很长的模拟时间才能达到合理的读数。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2021年9月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
脉冲神经网络与小样本学习【附PPT】
人工智能前沿讲习班
46+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
13+阅读 · 2021年10月22日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
脉冲神经网络与小样本学习【附PPT】
人工智能前沿讲习班
46+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员