Detecting, predicting, and alleviating traffic congestion are targeted at improving the level of service of the transportation network. With increasing access to larger datasets of higher resolution, the relevance of deep learning for such tasks is increasing. Several comprehensive survey papers in recent years have summarised the deep learning applications in the transportation domain. However, the system dynamics of the transportation network vary greatly between the non-congested state and the congested state -- thereby necessitating the need for a clear understanding of the challenges specific to congestion prediction. In this survey, we present the current state of deep learning applications in the tasks related to detection, prediction, and alleviation of congestion. Recurring and non-recurring congestion are discussed separately. Our survey leads us to uncover inherent challenges and gaps in the current state of research. Finally, we present some suggestions for future research directions as answers to the identified challenges.


翻译:检测、预测和缓解交通拥堵的目的在于提高交通网络的服务水平。随着对更高分辨率的较大数据集的获取机会的增加,深入学习对此类任务的相关性正在增加。近年来,一些全面的调查论文总结了交通领域深层学习应用,然而,交通网络的系统动态在非拥挤状态和拥挤状态之间差异很大,因此有必要明确了解交通拥堵预测所特有的挑战。在这次调查中,我们介绍了在与检测、预测和缓解拥挤有关的任务中深度学习应用的现状。对经常性和非经常性拥堵问题进行了分别讨论。我们的调查引导我们发现当前研究状态中固有的挑战和差距。最后,我们提出了一些关于未来研究方向的建议,作为所查明挑战的答案。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
16+阅读 · 2021年3月2日
Anomalous Instance Detection in Deep Learning: A Survey
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
15+阅读 · 2021年12月22日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
16+阅读 · 2021年3月2日
Anomalous Instance Detection in Deep Learning: A Survey
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Top
微信扫码咨询专知VIP会员