Arsenic (As) and other toxic elements contamination of groundwater in Bangladesh poses a major threat to millions of people on a daily basis. Understanding complex relationships between arsenic and other elements can provide useful insights for mitigating arsenic poisoning in drinking water and requires multivariate modeling of the elements. However, environmental monitoring of such contaminants often involves a substantial proportion of left-censored observations falling below a minimum detection limit (MDL). This problem motivates us to propose a multivariate spatial Bayesian model for left-censored data for investigating the abundance of arsenic in Bangladesh groundwater and for creating spatial maps of the contaminants. Inference about the model parameters is drawn using an adaptive Markov Chain Monte Carlo (MCMC) sampling. The computation time for the proposed model is of the same order as a multivariate Gaussian process model that does not impute the censored values. The proposed method is applied to the arsenic contamination dataset made available by the Bangladesh Water Development Board (BWDB). Spatial maps of arsenic, barium (Ba), and calcium (Ca) concentrations in groundwater are prepared using the posterior predictive means calculated on a fine lattice over Bangladesh. Our results indicate that Chittagong and Dhaka divisions suffer from excessive concentrations of arsenic and only the divisions of Rajshahi and Rangpur have safe drinking water based on recommendations by the World Health Organization (WHO).
翻译:孟加拉国地下水污染的砷(As)和其他有毒元素每天对数百万人构成重大威胁。了解砷和其他元素之间的复杂关系可以提供有用的洞察力,减轻饮用水中的砷中毒,并要求对元素进行多式建模。然而,对此类污染物的环境监测往往涉及相当大比例的左上层观测,低于最低检测限值(MDL)。这个问题促使我们提出一种多变空间贝叶斯模式,用于对孟加拉国地下水中的砷含量进行调查和绘制污染物空间分布图。利用适应性的Markov链蒙特卡洛(MCMC)取样对模型参数进行推论。拟议模型的计算时间与多变量高斯进程模型的顺序相同,该模型不渗透受审查值。拟议方法适用于孟加拉国水开发局(BWDB)提供的砷污染数据集(BAB),用于调查孟加拉国地下水中的砷、 ⁇ (Ba)和钙(Caa)空间图,使用适应性马可达·蒙特卡洛(Mon Carlo)取样的样本参数进行推断。拟议模型的计算时间与多变的Gajalgo Gasia-Restrish(Restia)组织根据我们Bestrich)的地震和Restrish(Restrich)系统测测测得的浓度计算出了Bh)的系统测量结果。