To predict a critical transition due to parameter drift without relying on model is an outstanding problem in nonlinear dynamics and applied fields. A closely related problem is to predict whether the system is already in or if the system will be in a transient state preceding its collapse. We develop a model free, machine learning based solution to both problems by exploiting reservoir computing to incorporate a parameter input channel. We demonstrate that, when the machine is trained in the normal functioning regime with a chaotic attractor (i.e., before the critical transition), the transition point can be predicted accurately. Remarkably, for a parameter drift through the critical point, the machine with the input parameter channel is able to predict not only that the system will be in a transient state, but also the average transient time before the final collapse.
翻译:预测因不依赖模型的参数漂移而导致的关键过渡是非线性动态和应用字段中的一个未决问题。 一个密切相关的问题是预测系统是否已经进入或系统在崩溃之前是否处于瞬态。 我们开发一个模型,以机器为基础,通过利用储油层计算纳入参数输入通道,来解决这两个问题。 我们证明,当机器在正常运行机制中接受有混乱吸引器的训练(即,在关键过渡之前),可以准确预测过渡点。 值得注意的是,如果参数流过临界点,带有输入参数通道的机器不仅能够预测系统将处于短暂状态,而且能够预测最终崩溃之前的平均瞬时。